An Autonomous Waist-Mounted Pedestrian Dead Reckoning System by Coupling Low-Cost MEMS Inertial Sensors and GPS Receiver for 3D Urban Navigation
نویسندگان
چکیده
Global positioning system (GPS) offers a perfect solution to the 3-dimension(3D) navigation. However, the GPS-only solution can’t provide continuous and accurate position information in the unfavourable environments, such as urban canyons, indoor buildings, dense foliages due to signal blockage, interference, or jamming etc. A pedestrian dead reckoning (PDR) system integrating the self-contained inertial sensors with GPS receiver is proposed to provide a seamless outdoor/indoor 3D pedestrian navigation. The MEM sensor module attached to the user’s waist is composed of a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis digital compass and a barometric pressure sensor, which doesn’t rely on any infrastructure. The positioning algorithm implements a loosely coupled GPS/PDR integration. The sensor data are fused via a complementary filter to reduce the integral drift and magnetic disturbance for accurate heading. The four key components of the PDR algorithm: step detection, stride length estimation, heading and position determination are described in detail and implemented by the microcontroller. The step is detected using the accelerometer signals by the combination of three approaches: sliding window, peak detection and zero-crossing. The step length is estimated using a simple linear relationship with the step frequency. By coupling the step length, azimuth and height, 3D navigation is achieved. The performance of the proposed system is carefully verified through several field outdoor and indoor walking tests. The positioning errors are below 3% of the total traveled distance. The main error source comes from the orientation estimation. The results indicate that the proposed system is effective in accurate tracking.
منابع مشابه
A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver
The body-mounted inertial systems for pedestrian navigation do not require any preinstalled facilities and can run autonomously. The advantages over other technologies make it especially attractive for the applications such as first responders, military and consumer markets. The hardware platform integrating the low-cost, low-power and small-size MEMS (micro-electro-mechanical systems) inertial...
متن کاملA 3D indoor positioning system based on low-cost MEMS sensors
A positioning system in the absence of GPS is important in establishing indoor directional guidance and localization. Inertial Measuring Units (IMUs) can be used to detect the movement of a pedestrian. In this paper, we present a three-dimensional (3D) indoor positioning system using foot mounted low cost Micro-Electro-Mechanical System (MEMS) sensors to locate the position and attitude of a pe...
متن کاملAccuracy Assessment of a High Sensitivity GPS Based Pedestrian Navigation System Aided by Low-Cost Sensors
Key words: pedestrian navigation, high sensitivity GPS Using long total dwell times, acquisition and weak GPS signal tracking in degraded signal environments are possible. A technology utilizing such long integration methods is called High Sensitivity GPS (HSGPS). A previous hardware in-the-loop GPS signal simulator test has demonstrated that, for a stand-alone HSGPS implementation provided by ...
متن کاملDevelopment of a Pedestrian Indoor Navigation System Based on Multi-sensor Fusion and Fuzzy Logic Estimation Algorithms
This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors...
متن کاملIntegrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment
This paper evaluates the performance of a shoe/foot mounted inertial system for pedestrian navigation application. Two different grades of inertial sensors are used, namely a medium cost tactical grade Honeywell HG1700 inertial measurement unit (IMU) and a low-cost MEMS-based Crista IMU (Cloud Cap Technology). The inertial sensors are used in two different ways for computing the navigation solu...
متن کامل